
J Glob Optim (2007) 39:127–154
DOI 10.1007/s10898-006-9128-7

O R I G I NA L PA P E R

Computing exact solution to nonlinear integer
programming: Convergent Lagrangian
and objective level cut method

D. Li · J. Wang · X. L. Sun

Received: 7 April 2006 / Accepted: 29 November 2006 / Published online: 16 January 2007
© Springer Science+Business Media B.V. 2007

Abstract In this paper, we propose a convergent Lagrangian and objective level cut
method for computing exact solution to two classes of nonlinear integer program-
ming problems: separable nonlinear integer programming and polynomial zero-one
programming. The method exposes an optimal solution to the convex hull of a revised
perturbation function by successively reshaping or re-confining the perturbation func-
tion. The objective level cut is used to eliminate the duality gap and thus to guarantee
the convergence of the Lagrangian method on a revised domain. Computational
results are reported for a variety of nonlinear integer programming problems and
demonstrate that the proposed method is promising in solving medium-size nonlinear
integer programming problems.

Keywords Nonlinear integer programming · Lagrangian duality · Object level cut ·
Separable nonlinear integer programming · Polynomial zero-one programming

D. Li (B)
Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
e-mail: dli@se.cuhk.edu.hk

J. Wang
Department of Management Science and Engineering, International Business College,
Qingdao University, Qingdao 266071, China
e-mail: jwang.qdu@gmail.com

X. L. Sun
Department of Management Science, School of Management, Fudan University,
Shanghai 200433, China
e-mail: xlsun@staff.shu.edu.cn

128 J Glob Optim (2007) 39:127–154

1 Introduction

We consider the following general class of nonlinear integer programming problems
in this paper:

(P) min f (x),

s.t. gi(x) ≤ bi, i = 1, . . . , m,

x ∈ X,

where X is a finite integer set in R
n, f and all gi, i = 1,. . ., m, are continuous functions

on X. More specifically, we develop an exact solution scheme for the following two
special cases of (P), the separable nonlinear integer programming problem:

(Ps) min f (x) =
n∑

j=1

fj(xj),

s.t. gi(x) =
n∑

j=1

gij(xj) ≤ bi, i = 1, . . . , m,

x ∈ X = X1 × X2 × · · · × Xn

and the constrained polynomial 0-1 programming problem:

(P0−1) min f (x) =
q∑

k=1

ck

∏

j∈Qk

xj,

s.t. gi(x) =
q∑

k=1

aik

∏

j∈Qk

xj ≤ bi, i = 1, 2, . . . , m,

x ∈ X = {0, 1}n,

where, in (Ps), all fj’s are integer-valued functions, all gij’s are real valued functions
and all Xj’s are finite integer sets in R and, in (P0−1), Qk ⊆ {1, . . . , n} for k = 1, . . . , q.

Integer programming has been one of the great challenges in front of the opti-
mization research community for many years, due to an exponential growth in its
computational complexity with respect to the problem dimension. It has been shown
in the literature that many special cases of (P) are NP-hard [9,26,33]. Therefore,
constructing an efficient exact algorithm for (P) is a challenging task.

Problem (P) possesses a nonconvex nature in many instances, e.g., concave inte-
ger programming [5,6,24] and polynomial integer programming [25]. The success
of the continuous-relaxation-based branch-and-bound methods for solving integer
programming problems relies on an ability to identify a global optimal solution to
continuous relaxation subproblems. Certain solution schemes in global optimization,
such as linear relaxation and convex underestimation [13,48,49] have been developed
to compute lower bounds of the nonconvex continuous relaxation subproblems. It is
noticed that algorithms such as branch-and-bound, outer-approximation and cutting
plane developed for solving general mixed-integer nonlinear programming (MINLP)
problems are applicable to problem (P) (see, e.g., [13,19,44,48,49]).

Problem (Ps) has a wide variety of applications, including resource allocation prob-
lems and nonlinear knapsack problems. In particular, manufacturing capacity plan-
ning, stratified sampling, production planning, and network reliability are special

J Glob Optim (2007) 39:127–154 129

cases of (Ps) (see [7,26,46] and the references therein). Ibaraki and Katoh [26] sum-
marized certain algorithms for singly constrained resource allocation problems where
the objective function is convex and separable and the single constraint is of a special
form of

∑n
j=1 xj = N. Marsten and Morin [31] proposed a dynamic programming and

branch-and-bound method for solving problem (Ps) where each fj is nonincreasing
on Xj. Bretthauer and Shetty [7,8] proposed a branch-and-bound algorithm for a
special singly constrained case of (Ps) where all fj’s and gij’s are convex. Hochbaum
[23] studied a singly constrained case of (Ps) where all fj’s and gij’s are convex and
monotonically nonincreasing. The piecewise linear approximations of fj and gij’s are
used in Hochbaum [23] to convert the problem into a 0-1 linear integer programming
problem.

Although dynamic programming is conceptually an ideal solution scheme for sep-
arable integer programming (Ps), the “curse of dimensionality” prevents its direct
application to the multiple-constrained cases of (Ps) when m is large. Moreover, all
the constraint functions, gij’s, are usually required to be integer-valued or rational-
valued for an efficient implementation of dynamic programming method.

Surveys of the methods for constrained nonlinear 0-1 programming problems can
be found in Hansen [20] and Hansen et al. [21]. The linearization method was proposed
by Dantzig [10], Fortet [14,15] and Watters [50]. Various branch-and-bound methods
or implicit enumeration methods were proposed in, for example, Hansen et al. [21]
and the references therein. The cutting-plane method was originated in Granot and
Hammer [18] for (P0−1) with a linear objective function and was extensively studied
in Balas and Mazzola [2,3] for general (P0−1).

Following the backtrack concept of Geoffrion [16], Taha [47] extended the additive
algorithm of Balas [1] for linear 0-1 programming to constrained polynomial 0-1 pro-
gramming by designing a two-level solution scheme. Note that Taha’s original results
[47] can only deal with problem (P0−1) with all cj’s nonnegative.

It is noted that a general twice-differentiable 0-1 program can be converted into a
convex 0-1 program by adding suitable quadratic terms and using the fact x2

i = xi for
xi ∈ {0, 1}. Therefore, problem (P0−1) can be reduced to a convex 0-1 programming
problem. It is also worth pointing out that semidefinite programming relaxation has
been also developed for nonconvex quadratic 0-1 program which is a special case of
(P0−1) (see [22,35]).

The continuous versions of problem (P0−1)has been studied by many researchers in
the context of multilinear programming and polynomial programming. Lower bound-
ing techniques and global optimization methods for multilinear programming were
investigated by Ryoo and Sahinidis [37,38] and Sherali [41,42]. Note that polynomial
function is a special case of factorable functions. McCormick [32] proposed a con-
vex underestimating method for computing global solution to nonconvex factorable
programming problem. Global optimization method based on reformulation-lineari-
zation technique was developed by Sherali and Wang [43] for nonconvex factorable
programming problem.

The concept of duality plays an important role in discrete optimization. The
Lagrangian relaxation methods are widely adopted in integer programming (see, e.g.,
[11,12,17,40]). As discussed in Li and White [30], the conventional Lagrangian dual
method would fail to generate an optimal solution to (P) due to the existence of a dual-
ity gap. Using group theory, Bell and Shapiro [4] proposed a convergent Lagrangian
duality theory for linear integer programming in which the duality gap is reduced by
reshaping the feasible region. Recently, the duality gap in general nonlinear integer

130 J Glob Optim (2007) 39:127–154

programming was examined and its related properties were studied in Li and Sun
[28] and Li and White [30]. Nonlinear Lagrangian formulations are proposed in Li
and Sun [28], Li and White [30] and Sun and Li [45] to offer a success guarantee for
the dual search in generating an optimal solution of the primal integer programming
problem. Although the nonlinear Lagrangian formulations possess strong duality or
asymptotic strong duality, it does not lead to a decomposability which is crucial for an
efficient implementation of a dual scheme.

This paper aims to develop a novel convergent Lagrangian method for (P) which
is an exact solution scheme and is efficient in implementation. The proposed method
exposes an optimal solution of (P) to the convex hull of the revised perturbation
function by successively using objective cuts. The algorithm starts with a lower bound
derived from the dual value by the conventional dual search and an upper bound
by a feasible solution generated in the dual search (if any). The lower level cut
and upper level cut are imposed to (P) such that the duality bound (duality gap) is
forced to shrink. For (Ps), the Lagrangian relaxation with an objective cut retains the
decomposability of (Ps), more specifically, results in a singly constrained separable
integer programming problem which can be solved efficiently by dynamic program-
ming. For (P0−1), the Lagrangian relaxation with an objective cut results in a sin-
gly constrained polynomial zero-one programming problem which can be efficiently
solved by a revised version of Taha’s method proposed in this paper. The objective
cut is updated successively with the distance between the upper cut and the lower cut
monotonically decreasing. The algorithm terminates in a finite number of iterations,
either reaching an optimal solution to (P) or reporting an infeasibility of (P).

The paper is organized as follows. We introduce some preliminary results of
Lagrangian duality in Sect. 2. The idea of adopting an objective level cut in reducing the
duality gap is motivated in Sect. 3 and a corresponding solution scheme is developed.
In Sects. 4 and 5, the details of the algorithms and their computational implementation
for (Ps) and (P0−1), are described, respectively. Computational results are reported
in Sect. 6 for several classes of medium-size test problems. Finally, a brief concluding
remark is given in Sect. 6.

2 Lagrangian duality

2.1 Lagrangian dual formulation

By associating with each constraint in (P) a nonnegative λi, the Lagrangian relaxation
of (P) is formulated as

(Lλ) d(λ) = min
x∈X

L(x, λ),

where λ = (λ1, . . . , λm)
T ∈ R

m+ and the Lagrangian function of (P) is defined as:

L(x, λ) = f (x)+
m∑

i=1

λi(gi(x)− bi).

For separable problem (Ps), one of the prominent features of adopting the Lagrangian
relaxation problem (Lλ) is that it can be decomposed into n one-dimensional problems:

J Glob Optim (2007) 39:127–154 131

min fj(xj)+
m∑

i=1

λigij(xj), (1)

s.t. xj ∈ Xj.

Notice that (1) is a problem of minimizing a univariate function over a finite integer
set and its optimal solution set can be easily identified. Denote by v(·) the optimal
value of problem (·). Let the feasible region and the optimal value of (P) be defined as,

S = {x ∈ X | gi(x) ≤ bi, i = 1, . . . , m},
f ∗ = v(P) = min

x∈S
f (x).

Since d(λ) ≤ f (x) for all x ∈ S and λ ≥ 0, the dual value d(λ) always provides a lower
bound for the optimal value of (P) (weak duality):

f ∗ ≥ d(λ), ∀λ ≥ 0.

We assume in the sequel that minx∈X f (x) < f ∗, otherwise minx∈X = f ∗ must hold and
(P) reduces to an unconstrained integer programming problem. The Lagrangian dual
problem of (P) is to search for an optimal multiplier vector λ∗ ∈ R

m+ which maximizes
d(λ) for all λ ≥ 0:

(D) d(λ∗) = max
λ≥0

d(λ).

By weak duality, f ∗ ≥ d(λ∗) holds. The difference f ∗ − d(λ∗) is called the duality gap
between (P) and (D). Let UB be an upper bound of f ∗. We denote UB − d(λ∗) as a
duality bound between (P) and (D). It is clear that a duality bound is always larger
than or equal to the duality gap. If f ∗ = d(λ∗), then the strong duality is said to be
satisfied. Unfortunately, the strong duality is rarely present in integer programming.

A vector λ∗ ≥ 0 is said to be an optimal generating multiplier vector of (P) if an
optimal solution x∗ to (P) can be generated by solving (Lλ) with λ = λ∗. A pair
(x∗, λ∗) is said to be an optimal primal-dual pair of (P) if the optimal dual solution λ∗
to (D) is an optimal generating multiplier vector for an optimal solution x∗ to (P). As
discussed in Li and White [30], the conventional Lagrangian dual method would fail
to generate an optimal solution of the primal problem (P) in two critical situations.
The first situation occurs where no solution of (P) can be generated by problem (Lλ)
for any λ ≥ 0. The second situation occurs where no solution to problem (Lλ∗), with
λ∗ being an optimal solution to (D), is a solution to (P). The first situation mentioned
above is associated with the existence of an optimal generating Lagrangian multiplier
vector, while the second is related to the existence of an optimal primal-dual pair.

2.2 Perturbation function and duality gap

Let g(x) = (g1(x), . . . , gm(x))T and b = (b1, . . . , bm)
T . The perturbation function of

(P) is defined as follows for y ∈ R
m,

w(y) = min{f (x) | g(x) ≤ y, x ∈ X}, (2)

where the domain of w is

Y = {y ∈ R
m | there exists x ∈ X such that g(x) ≤ y}.

132 J Glob Optim (2007) 39:127–154

Note that Y is not always a convex set. The perturbation function w can be extended
to the convex hull of Y by defining w(y) = +∞ for y ∈ conv(Y)\Y. Furthermore, w is
a nonincreasing and piecewise constant (+∞) function of y on conv(Y). By definition
(2), w(g(x)) ≤ f (x) for any x ∈ X and w(b) = f ∗. In a process of increasing y, if there
is a new point x̃ ∈ X such that f (x̃) < w(y) for any y ∈ {z ∈ Y | z ≤ g(x̃), z �= g(x̃)},
the perturbation function w has a downward jump at y = g(x̃). The point g(x̃) corre-
sponding to this new point x̃ is called a corner point of the perturbation function w
in the y space. Since f and gi’s are continuous functions and X is a finite integer set,
there is only a finite number of corner points, say K corner points, c1, c2,. . . , cK. Let
fi = w(ci), i = 1, . . . , K. Define the sets of corner points in the y space and the {y, w(y)}
space, respectively, as follows,

C = {ci = (ci1, ci2, . . . , cim) | i = 1, . . . , K},
�c = {(ci, fi) | i = 1, . . . , K}.

It is clear that (y, w(y)) ∈ �c iff for any z ∈ Y satisfying z ≤ y and z �= y, it holds
w(z) > w(y).

From the definition of the corner point, the domain Y can be decomposed into K
subsets with each ci as the lower end of the corresponding subset Yi. More specifically,
we have Y = ∪K

i=1Yi with cij = min{yj | y ∈ Yi}, j = 1, . . . , m, and w takes a constant
fi over Yi:

w(y) = fk, ∀y ∈ Yk, k = 1, . . . , K.

Define the convex envelope function of w to be the greatest convex function maj-
orized by w:

ψ(y) = max{h(y) | h(y) is convex on Y, h(y) ≤ w(y), ∀y ∈ Y}.
It can be easily seen thatψ is piecewise linear and nonincreasing on Y and w(y) ≥ ψ(y)
for all y ∈ Y. Since ψ is convex and nonincreasing, we have

ψ(y) = max{−λTy + r | λ ∈ R
m+ , r ∈ R, and − λTz + r ≤ w(z), ∀z ∈ Y}

or equivalently,

ψ(y) = max −λTy + r, (3)

s.t. − λTck + r ≤ fk, k = 1, . . . , K,

λ ∈ R
m+ , r ∈ R.

For any fixed y ∈ Y, introduce a dual variable µk ≥ 0 for each constraint −λTck + r ≤
fk, k = 1, . . . , K. Dualizing the linear program (3) then yields

ψ(y) = min
K∑

k=1

µkfk, (4)

s.t.
K∑

k=1

µkck ≤ y,

K∑

i=1

µk = 1, µk ≥ 0, k = 1, . . . , K.

The following result establishes the relation between the duality and the perturbation
function.

J Glob Optim (2007) 39:127–154 133

Theorem 1 ([27,29]) Let (λ∗, r∗) and µ∗ be optimal solutions to (3) and (4) with y = b,
respectively. Then

(1) λ∗ is an optimal solution to the dual problem (D) and

ψ(b) = max
λ≥0

d(λ) = d(λ∗).

(2) For each k with µ∗
k > 0, any x̄ ∈ X satisfying (g(x̄), f (x̄)) = (ck, fk) is an optimal

solution to the Lagrangian problem (Lλ∗).

3 Objective level cut method

Stimulated by the relationship between the duality gap and the geometry of the per-
turbation function, we develop in this section the solution scheme of the convergent
Lagrangian and objective level cut algorithm for (P).

3.1 Motivation

To motivate the solution algorithm, let us consider the following example:

Example 1

min f (x) = −2x2
1 − x2 + 3x2

3,

s.t. 5x1 + 3x2
2 − √

3x3 ≤ 7,

x ∈ X = {x ∈ Z
2 | 0 ≤ xi ≤ 2, i = 1, 2, 3}.

The optimal solution of this example is x∗ = (1, 0, 0)T with f ∗ = f (x∗) = −2. The
perturbation function of this problem, w(·), and its convex envelope function, ψ(·),
are illustrated in Fig. 1. From Fig. 1 we can see that point C that corresponds to
the optimal solution x∗ “hides” above the convex envelope of the perturbation func-
tion and therefore there is no optimal generating multiplier for x∗. In other words,
it is impossible for x∗ to be found by the conventional Lagrangian dual method.

Fig. 1 The perturbation
function of Example 1

−5 0 5 10 15 20 25

−10

−5

0

5

10

z

y

A
0

B
0

d(λ0)=−5.6

A
0
=[0,0|(0,0,0)]

B
0
=[10,−8|(2,0,0)]

C=[5,−2|(1,0,0)]

[g(x),f(x)|x]

y=7

z=w(y)

z=ψ(y)
C

134 J Glob Optim (2007) 39:127–154

The optimal solution to (D) is λ0 = 0.8 with d(λ0) = −5.6. Thus, the duality gap is
f (x∗) − d(λ0) = −2 + 5.6 = 3.6. A key observation is that point C can be exposed
to the convex envelope or the convex hull of the perturbation function by adding
an objective cut. As a matter of fact, since A0 corresponds to a feasible solution
x0 = (0, 0, 0)T , the function value f (x0) = 0 is an upper bound of f ∗. Moreover, by the
weak duality, the dual value d(λ0) = −5.6 is a lower bound of f ∗. The current duality
bound is 0 − (−5.6) = 5.6. Therefore, adding an objective cut of −5.6 ≤ f (x) ≤ 0
to the original problem does not exclude the optimal solution while the perturbation
function will be reshaped, or more precisely, be re-confined. Since the objective func-
tion is integer-valued, we can set a stronger objective cut of −5 ≤ f (x) ≤ −1 after
storing the current best feasible solution x0 as the incumbent. The modified problem
then has the following form:

min f (x) = −2x2
1 − x2 + 3x2

3, (5)

s.t. 5x1 + 3x2
2 − √

3x3 ≤ 7,

x ∈ X1 = X ∩ {x | −5 ≤ f (x) ≤ −1}.
The perturbation function of problem (5) is shown in Fig. 2. The optimal dual multiplier
to (5) is λ1 = 0.7593 with dual value d(λ1) = −4.0372. Since x1 = (0, 1, 0)T corre-
sponding to A1 is feasible, the duality bound is now reduced to f (x1) − (−4.0372) =
−1 + 4.037 = 3.0372. Again we can add an objective cut −4 ≤ f (x) ≤ f (x1)− 1 = −2
to (5) and obtain the following problem:

min f (x) = −2x2
1 − x2 + 3x2

3, (6)

s.t. 5x1 + 3x2
2 − √

3x3 ≤ 7,

x ∈ X2 = X ∩ {x | −4 ≤ f (x) ≤ −2}.
The perturbation function of problem (6) is shown in Fig. 3. The optimal dual multi-
plier is λ2 = 0.3333 with dual value d(λ2) = −2.6667. Now point C corresponding to
x∗ is exposed to the convex hull of the perturbation function and the duality bound
is reduced to f (x∗) − (−2.6667) = −2 + 2.6667 = 0.6667 < 1. Since the objective
function is integer-valued, we claim that x∗ = (1, 0, 0)T is the optimal solution to the
original problem.

This example clearly illustrates a procedure of gradually reducing the duality bound
and thus eventually eliminating the duality gap by using objective cuts. The conver-
gent Lagrangian and objective level cut method exposes an optimal solution of (P) to
the convex hull of the revised perturbation function by successively using objective
cuts. The algorithm starts with a lower bound derived from the dual value by the
conventional dual search and an upper bound by a feasible solution generated in the
dual search (if any). The lower level cut and upper level cut are imposed to (P) such
that the duality bound (duality gap) is forced to shrink. The objective cut is updated
successively with the distance between the upper cut and the lower cut monotonically
decreasing. The algorithm terminates in a finite number of iterations, either reaching
an optimal solution to (P) or reporting an infeasibility of (P).

We can make the following clear statement: with a price of complicating the con-
ventional Lagrangian relaxation of (P) by attaching a constraint to confine the optimal
value within a certain range, we are able to remove the notorious phenomenon of dual-
ity gap associated with the conventional Lagrangian dual method, thus guaranteeing
the identification of an exact solution to (P).

J Glob Optim (2007) 39:127–154 135

Fig. 2 The perturbation
function of problem (5)

0 2 4 6 8 10 12 14 16 18
−6

−5

−4

−3

−2

−1

0

A
1

B
1

C

d(λ1)=−4.0372

y=7

[g(x),f(x)|x]

A
1
=[3,−1|(0,1,0)]

B
1
=[8.2679,−5|(2,0,1)]

C=[5,−2|(1,0,0)]

y

z

Fig. 3 The perturbation
function of problem (6)

2 4 6 8 10 12 14 16 18
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

y

z

d(λ2)=−2.6667

B
3
=[8,−3|(1,1,0)]

C=[5,−2|(1,0,0)]

[g(x),f(x)|x]

C

B
3

y=7

3.2 Objective level cut scheme

Consider the following modified version of (P) by imposing a lower cut l and an upper
cut u:

(P(l, u)) min f (x),

s.t. gi(x) ≤ bi, i = 1, . . . , m,

x ∈ X(l, u) = {x ∈ X | l ≤ f (x) ≤ u}.

It is obvious that (P(l, u)) is equivalent to (P) if l ≤ f ∗ ≤ u. The Lagrangian relaxation
of (P(l, u)) is:

(Lλ(l, u)) d(λ, l, u) = min
x∈X(l,u)

L(x, λ),

136 J Glob Optim (2007) 39:127–154

where λ ∈ R
m+ and L(x, λ) = f (x)+ ∑m

i=1 λi(gi(x)− bi). The Lagrangian dual problem
of (P(l, u)) is then given as

(D(l, u)) max
λ∈R

m+
d(λ, l, u).

Since d(λ) or d(λ, l, u) is a nonsmooth concave function of λ, the subgradient
method or the outer Lagrangian linearization method (see, e.g., [11,34,40]) can be
used to solve (D) and (D(l, u)). In practice, the subgradient method terminates at an
approximate solution when certain stopping criteria are met. Next, we discuss the
properties of (P(l, u)) and its dual (D(l, u)).

Lemma 1

(1) Let λ∗(l, u) denote the optimal solution to (D(l, u)). The optimal dual value
d(λ∗(l, u), l, u) is a nondecreasing function of l.

(2) If l ≤ f ∗ ≤ u, then d(λ∗) ≤ d(λ∗(l, u), l, u) ≤ f ∗. Moreover, let σ = max{f (x) |
f (x) < f ∗, x ∈ X \ S}. If σ < l ≤ f ∗, then λ∗(l, u) = 0 and d(λ∗(l, u), l, u) = f ∗.

(3) For l < f ∗, we have d(λ∗(l, u), l, u) ≥ l.

Proof

(1) If l1 ≤ l2, then d(λ, l1, u) ≤ d(λ, l2, u) for all λ ∈ R
m+ . Thus,

d(λ∗(l1, u), l1, u) = max
λ∈R

m+
d(λ, l1, u) ≤ max

λ∈R
m+

d(λ, l2, u) = d(λ∗(l2, u), l2, u).

(2) Since X(l, u) ⊆ X, we have

d(λ) = min
x∈X

L(x, λ) ≤ min
x∈X(l,u)

L(x, λ) = d(λ, l, u), ∀λ ∈ R
m+ .

Thus, d(λ∗) ≤ d(λ∗(l, u), l, u). If l ≤ f ∗ ≤ u, then S∗ ⊆ X(l, u), where S∗ is the set
of optimal solutions to (P). For any λ ∈ R

m+ , we have

d(λ, l, u) = min
x∈X(l,u)

L(x, λ)

≤ min
x∈S∗ L(x, λ)

≤ min
x∈S∗ f (x)

= f ∗.

Therefore d(λ∗(l, u), l, u) ≤ f ∗. Suppose that σ < l ≤ f ∗ ≤ u, then there is no
infeasible point x in X(l, u) with f (x) < f ∗. Thus

d(0, l, u) = min
x∈X(l,u)

f (x) = min
x∈S∗ f (x) = f ∗ ≥ min

x∈S∗ L(x, λ) ≥ d(λ, l, u)

for all λ ∈ R
m+ . Thus, λ = 0 solves (D(l, u)) and d(0, l, u) = f ∗.

(3) Consider the perturbation function of (P(l, u)). The set of corner points of it is
a subset of �c satisfying l ≤ fk ≤ u. Thus, applying (4) and Theorem 1, we infer
that there exist an index set I(l, u) ⊂ {1, 2, . . . , K} and µ∗

k(l, u) > 0, k ∈ I(l, u),
such that

J Glob Optim (2007) 39:127–154 137

d(λ∗(l, u), l, u) =
∑

k∈I(l,u)

µ∗
k(l, u)fk, (7)

∑

k∈I(l,u)

µ∗
k(l, u)ck ≤ b,

∑

k∈I(l,u)

µ∗
k(l, u) = 1,

l ≤ fk ≤ u, k ∈ I(l, u).

Since for each k ∈ I(l, u), fk ≥ l, the above conditions imply that d(λ∗(l, u), l, u)
≥ l. �

Lemma 1 reveals that the quality (the tightness) of the dual search can be improved
by raising the value of the lower objective level cut.

Lemma 2 If d(λ∗(l, u), l, u) < v(P) = f ∗, then

min{f (x) | x ∈ T(λ∗(l, u), l, u) \ S} ≤ d(λ∗(l, u), l, u),

where T(λ∗(l, u), l, u) is the solution set to problem (Lλ(l, u)) with λ = λ∗(l, u).

Proof From (7), we have
∑

k∈I(l,u)

µ∗
k(l, u)(fk − d(λ∗(l, u), l, u)) = 0.

If there is a k such that fk is not equal to d(λ∗(l, u), l, u), then there must be a k1 such
that fk1 is strictly greater than d(λ∗(l, u), l, u) and there must be a k2 such that fk2 is
strictly smaller than d(λ∗(l, u), l, u). From the weak duality, the solution corresponding
to fk2 must be infeasible in (P). If all fk’s are equal to d(λ∗(l, u), l, u), then all solutions
in T(λ∗(l, u), l, u) must be infeasible from the assumption of d(λ∗(l, u), l, u) < f ∗. �

Lemma 2 implies that at least one infeasible solution will be removed when placing
a cut higher than d(λ∗(l, u), l, u).

One crucial issue in efficiently implementing this solution idea is how to solve
(Lλ(l, u)), the relaxation problem of the revised problem (P(l, u)) (such as the Lagrang-
ian relaxations in (5) and (6)). In the following two sections, we will discuss the solution
schemes for (Ps) and (P0−1), respectively.

4 Algorithm for separable nonlinear integer programming

In this section, we describe the details of the algorithm for separable nonlinear integer
programming problem (Ps). Notice that, for problem (Ps), L(x, λ) = ∑n

j=1 θj(xj, λ) −
α(λ) where θj(xj, λ) = fj(xj) + ∑m

i=1 λigij(xj) and α(λ) = ∑m
i=1 λibi. Thus, problem

(Lλ(l, u)) can be explicitly written for (Ps) as:

d(λ, l, u) = min
n∑

j=1

θj(xj, λ)− α(λ),

s.t. l ≤
n∑

j=1

fj(xj) ≤ u,

x ∈ X.

138 J Glob Optim (2007) 39:127–154

It is clear that for (Ps) the Lagrangian relaxation problem (Lλ(l, u)) is a separable
integer programming problem with a lower bound and upper bound constraint for
f (x). As each fj(xj) is assumed to be integer-valued for all xj ∈ Xj in (Ps), (Lλ(l, u))
can be then efficiently solved by dynamic programming. Let

sk =
k−1∑

j=1

fj(xj), k = 2, . . . , n + 1

with an initial condition s1 = 0. Then (Lλ(l, u)) can be solved by the following dynamic
programming formulation:

(DP) min sn+1 +
n∑

j=1

m∑

i=1

λigij(xj),

s.t. sj+1 = sj + fj(xj), j = 1, 2, . . . , n,

s1 = 0,

l ≤ sn+1 ≤ u,

xj ∈ Xj, j = 1, 2, . . . , n.

The state in the above dynamic programming formulation takes finite values at each
stage. All the solutions to (Lλ(l, u)) can be generated using the conventional dynamic
programming technique.

We now describe the algorithm for (Ps) as follows.

Algorithm 1 (Convergent Lagrangian and objective level cut method for (Ps))

Step 0 (Initialization)
(1) Solve the dual problem (D) by using the subgradient method or by the

outer Lagrangian linearization method. Let λ0 be the best dual vector
found. Set d0 = d(λ0).

(2) Let x∗ denote the current best feasible solution (if there is one) and set
v0 = f (x∗). The initial feasible solution can either be found during the
dual search or by certain heuristic method. If v0 − d0 < 1, stop and x∗
is an optimal solution to (Ps); Otherwise, set l0 =
d0�, u0 = v0 − 1 and
k = 0, where
x� is the minimum integer number larger than or equal
to x.

(3) When no feasible solution is found, set v0 to be equal to an upper bound
of f (x) over X. If v0 − d0 < 0, stop and there is no feasible solution to
(Ps); Otherwise, set l0 =
d0�, u0 = v0 and k = 0.

Step 1 (finding feasible solution). If lk = uk, goto Step 3. Otherwise, solve the fol-
lowing problem using dynamic programming,

(Pf) min gλk(x) =
n∑

j=1

m∑

i=1

λk
i gij(xj),

s.t. lk ≤ f (x) ≤ uk,

x ∈ X.

Let Ck be the set of optimal solutions to the above problem.

J Glob Optim (2007) 39:127–154 139

(1) If there is a feasible solution in Ck, then set the incumbent x∗ =
arg min{f (x) | x ∈ Ck ∩ S} and vk = f (x∗), where S is the feasible
region of (Ps). If vk − lk < 1, stop and the current incumbent x∗ is
an optimal solution to (Ps). Otherwise, set uk+1 = vk − 1, lk+1 = lk,
λk+1 = λk and k := k + 1, and goto Step 1.

(2) If for any x ∈ Ck, gλk(x) >
∑m

i=1 λ
k
i bi holds, stop. The current incumbent

x∗ is an optimal solution to (Ps) or there is no feasible solution to (Ps)

if no incumbent has been found.
Step 2 (dual search with objective cut). Solve (D(lk, uk)) by the subgradient method

or the outer Lagrangian linearization method, while the Lagrangian relax-
ation problem (Lλ(lk, uk)) is solved by using dynamic programming. The
subgradient method terminates when the algorithm is not able to increase
the dual value after a given number of iterations. Let λk be the dual vec-
tor that generates the highest dual value in the dual search process. Set
dk = d(λk, lk, uk).
(1) If there is a feasible solution x∗ found during the dual search process,

replace the incumbent by x∗, set vk = f (x∗), uk+1 = vk − 1, lk+1 =
max{lk,
dk�}, k := k + 1, and goto Step 1.

(2) If no feasible solution is found and dk > lk, set lk+1 =
dk�, uk+1 = uk,
k := k + 1, and goto Step 1.

Step 3 (finding feasible solution when λ = 0). Solve the following dynamic program-
ming problem

(DP0) min sn+1,

s.t. sj+1 = sj + fj(xj), j = 1, 2, . . . , n,

s1 = 0,

lk ≤ sn+1 ≤ uk,

xj ∈ Xj, j = 1, 2, . . . , n.

(1) If there is a feasible optimal solution x∗ to (DP0), stop. The incumbent
x∗ is the optimal solution to (Ps).

(2) Set uk+1 = uk, lk+1 = v(DP0)+ 1. If vk − lk+1 < 1, stop. The incumbent
x∗ is an optimal solution to (Ps) or there is no feasible solution to (Ps)

if no incumbent has been found. Otherwise, set k := k + 1 and goto
Step 1.

Step 1 in the above algorithm is adopted to speed up the convergence of the algo-
rithm. When the objective level cut is updated, solving (Pf) could sometimes identify
a feasible solution of (Ps) with an objective level less than uk. There exist multiply
constrained cases where more than one points (g(x), f (x)) with g(x) �≤ b surrounding
the axis y = b and span a horizontal plane (corresponding to λ = 0) with the same f
value (being the lowest objective value over the defined domain). In such a situation,
the dual search method will fail to raise the dual value higher than the lowest objective
value [29]. Step 3 of the above algorithm deals with such a kind of situations.

Theorem 2 Algorithm 1 either finds an optimal solution of (Ps) or reports an infeasi-
bility of (Ps) in at most u0 − l0 + 1 iterations.

Proof First, from the algorithm and Lemma 1, it always holds lk ≤ f ∗. It is clear
that (Ps) is infeasible if the algorithm stops at Step 0 (3), Step 1 (2) or Step 3 (2)

140 J Glob Optim (2007) 39:127–154

when the incumbent is empty. The optimality of the incumbent x∗ is obvious when the
algorithm stops at Step 0 (2) or Step 1 (1). If the algorithm stops at Step 1 (2), then
there is no feasible solution x satisfying lk ≤ f (x) ≤ uk. Thus, from the algorithm, if
the incumbent is x∗, then f (x∗) = uk + 1 and x∗ is an optimal solution to (Ps). If the
algorithm stops at Step 3 (1), then λ = 0 is the dual optimal solution to (P(lk, uk))

and f (x∗) ≥ lk and thus x∗ must be an optimal solution to (Ps). If the algorithm stops
at Step 3 (2), then there is no feasible solution x satisfying lk ≤ f (x) ≤ uk and the
stopping condition vk − lk+1 < 1 implies that there is no better feasible solution than
the incumbent x∗.

Suppose that the algorithm does not stop at iteration k, then by the algorithm,
either uk+1 ≤ uk − 1 or lk+1 ≥ lk + 1. Notice that for any k, lk ≤ f ∗ ≤ uk + 1 holds.
Therefore, in at most u0 − l0 iterations, uk = lk will be satisfied. If the algorithm does
not stop before u0 − l0 + 1 iterations, then the algorithm will stop in (u0 − l0 + 1)th
iteration either at Step 3 (1) or at Step 3 (2), reaching an optimal solution or reporting
an infeasibility of (Ps). �

We now discuss several implementation issues of the dynamic programming in
Algorithm 1. Three techniques are developed to facilitate an efficient use of dynamic
programming: partition of the objective level cut, reduction of the state space and
feasibility check of (DP0).

The initial duality bound u0 − l0 at Step 0 of Algorithm 1 has a great effect on the
efficiency of dynamic programming when solving (P(lk, uk)). As a matter of fact, if the
initial duality bound is very large, then the dynamic programming can be very time-
consuming and inefficient due to a large range of the state space. In order to reduce
the range without losing any optimal solution, a partition scheme of the objective level
cut is proposed to divide the range [l0, u0] at Step 0 into q smaller nonoverlapping
blocks such that

[l0, u0] = ∪q
t=1[lt0, ut

0],

where l10 = l0, uq
0 = u0, and lt+1

0 = ut
0 + 1. The original problem can be then divided

into q subproblems with t = 1, 2, . . . , q:

(Pt) min f (x),

s.t. gi(x) ≤ bi, i = 1, . . . , m,

lt0 ≤ f (x) ≤ ut
0, x ∈ X.

These q problems will be solved successively from t = 1 to t = q. If an optimal solution
x∗ is found in problem (Pt) for 1 ≤ t ≤ q, then x∗ is also an optimal solution to (Ps)

and there is no need to solve (Pt+1), . . . , (Pq). If all problems (Pt) are infeasible, then
we claim that the original problem is infeasible.

Next, we discuss the strategy for reducing state space. Let s̄j, sj denote the upper
bound and lower bound of the range of state variable sj, respectively. Let

f j = max
lj≤xj≤uj

fj(xj),

f
j
= min

lj≤xj≤uj
fj(xj).

J Glob Optim (2007) 39:127–154 141

With the initial condition sF
1 = sF

1 = 0, the range sF
j of the state variable sj at stage j

can be determined by a forward recursive formulation,

sF
j+1 = sF

j + f j for j = 1, . . . , n,

sF
j+1 = sF

j + f
j

for j = 1, . . . , n.

With the initial condition sB
n+1 = uk, sB

n+1 = lk, the range sB
j of the state variable sj at

stage j can be determined by a backward recursive formulation,

sB
j = sB

j+1 − f
j

for j = n, . . . , 1,

sB
j = sB

j+1 − f j for j = n, . . . , 1.

Therefore, the exact expression of the state range can be given as follows:

[sj, sj] =
⎧
⎨

⎩

[0, 0] for j = 1,
[sB

j , sB
j] ∩ [sF

j , sF
j] for j = 2, . . . , n,

[lk, uk] for j = n + 1.
(8)

If any [sj, sj] is empty, then P(lk, uk) has no feasible solution. In general, the state space
of dynamic programming can be significantly reduced by (8).

Now we discuss the implementation of solving (DP0) at Step 3 of Algorithm 1, a
situation where λ is set to be zero in the dual search. Since there may exist a large
number of optimal solutions to (DP0), an efficient ordering of the optimal solutions
by certain rules is crucial to the feasibility check process. For given µ ≥ 0 and µ �= 0,
consider the following surrogate constraint:

gµ(x) =
m∑

i=1

µigi(x) ≤
m∑

i=1

µibi = bµ.

Let Sµ = {x ∈ X | gµ(x) ≤ bµ}. It is clear that S ⊆ Sµ. Suppose that the set of optimal
solutions to (DP0) is T0. Rank the points in T0 from the smallest to the largest in
terms of the value of gµ(x):

T0 = {x1, x2, . . . , xN}.

Let t be such that gµ(xt) ≤ bµ and gµ(xt+1) > bµ. The point xt is called a “turning
point.” When solving (DP0) by dynamic programming, we generate and calculate
gµ(xk) for k = 1, 2, . . ., till a feasible solution to (P) is found or a turning point is
met. In the latter case there is no feasible solution in T0. In the worst case, checking
feasibility of T0 requires generating t + 1 optimal solutions in T0.

Finally, we point out that although the objective function is assumed to be inte-
ger-valued in the algorithm, a rational objective function can be also handled by
multiplying a suitable number.

To illustrate Algorithm 1, we consider the following small-size example.

142 J Glob Optim (2007) 39:127–154

Table 1 Iteration process of Example 2

Iteration λk dk x∗ f (x∗) lk uk

0 (0.853, 0, 0.915)T −548.526 −548 113
1 (0.853, 0, 0.915)T −548.526 (−1, −4, 5, 4, 5)T −367 −548 −368
2 (0.853, 0, 0.915)T −548.526 (−2, −4, 5, 4, 5)T −373 −548 −374
3 (0.853, 0, 0.915)T −548.526 (−3, −4, 5, 4, 5)T −385 −548 −386
4 (0.853, 0, 0.915)T −548.526 (−1, −5, 5, 5, 5)T −400 −548 −401
5 (0.853, 0, 0.915)T −548.526 (−2, −5, 5, 5, 5)T −406 −548 −407
6 (0.853, 0, 0.915)T −548.526 (−3, −5, 5, 5, 5)T −418 −548 −419
7 (0.246, 0, 0.385)T −540.492 (−3, −5, 5, 5, 5)T −418 −540 −419
8 (0, 0, 0)T −540.000 (−3, −5, 5, 5, 5)T −418 −539 −419
9 (0.140, 0, 0.151)T −530.359 (−3, −5, 5, 5, 5)T −418 −530 −419
10 (0, 0, 0)T −530.000 (−3, −5, 5, 5, 5)T −418 −529 −419
11 (0.047, 0, 0.047)T −528.899 (−3, −5, 5, 5, 5)T −418 −528 −419
12 (0, 0, 0)T −528.000 (−3, −5, 5, 5, 5)T −418 −527 −419
13 (0, 0, 0)T −527.000 (−4, −5, 5, 2, 5)T −526 −527 −527
14 (0, 0, 0)T −527.000 (−4, −5, 5, 2, 5)T −526

Example 2

min − 3x1 − 3x2
1 + 8x2 − 7x2

2 − 5x3 − 3x2
3 + 2x4 + 4x2

4 − 4x5 − 7x2
5,

s.t. 7x1 + 7x2
1 + 4x2 + 4x2

2 − 8x3 − 7x2
3 − 7x4 + 2x2

4 − 5x5 + 2x2
5 ≤ −6,

8x1 − 5x2
1 + 4x2 − 7x2

2 − 4x3 + 8x2
3 + 7x4 − 6x2

4 − 2x5 − 7x2
5 ≤ −2,

− x1 − 3x2
1 − 2x2 + x2

2 − 2x3 + 8x2
3 − 5x4 − 3x2

4 + 5x5 − 7x2
5 ≤ 9,

x ∈ X = {x ∈ Z
5 | −5 ≤ xi ≤ 5, i = 1, 2, 3, 4, 5}.

It can be verified that the optimal solution of Example 2 is x∗ = (−4, −5, 5, 2, 5)T with
f (x∗) = −526.

The initial dual value is d0 = −548.526 and an upper bound of f (x) is v0 = 113.
Therefore, the initial interval of the objective level cut is [−548, 113]. A partition
scheme is used to divide the initial interval of objective cut into smaller ones with an
interval length of 200. The algorithm finds the optimal solution x∗ at iteration 13. The
dual search at iteration 14 finds a zero optimal dual solution and there is no feasible
solution in the set of optimal solutions to the corresponding Lagrangian relaxation
problem. The algorithm thus terminates and reports x∗ as an optimal solution. Table 1
summaries the iteration process of the algorithm.

5 Algorithm for polynomial 0-1 programming

In this section, we first present a two-level solution scheme for the Lagrangian relax-
ation of the polynomial 0-1 programming problem (P0−1). The main algorithm for
(P0−1) is then proposed with an illustrative numerical example.

J Glob Optim (2007) 39:127–154 143

5.1 Solution scheme for Lagrangian relaxation problem

For polynomial 0-1 programming problem (P0−1), the Lagrangian relaxation of
(P(l, u)) becomes the following singly constrained polynomial 0-1 programming prob-
lem if we set the upper cut u at infinity,

(Lλ(l)) d(λ, l) = min
x∈{0,1}n

q∑

k=1

ck

∏

j∈Qk

xj +
m∑

i=1

λi

⎡

⎣
q∑

k=1

aik

∏

j∈Qk

xj − bi

⎤

⎦ ,

s.t. l ≤ f (x) =
q∑

k=1

ck

∏

j∈Qk

xj,

x ∈ {0, 1}n.

5.1.1 Two-level reformulation

Similar to Taha [47], problem (Lλ(l)) can be converted into the following equivalent
two-level formulation that consists of a linear 0-1 master program

min f̃ (y) =
q∑

k=1

ãkyk, (9)

s.t. g̃(y) =
q∑

k=1

c̃kyk ≤ b̃,

yk ∈ {0, 1}, k = 1, 2, . . . , q

and a set of nonlinear secondary constraints

yk =

⎧
⎪⎪⎨

⎪⎪⎩

∏

j∈Qk

xj k ∈ J+ = {k | ck + ∑m
i=1 λiaik ≥ 0},

1 −
∏

j∈Qk

xj k ∈ J− = {k | ck + ∑m
i=1 λiaik < 0}, (10)

where ãk = ck +∑m
i=1 λiaik and c̃k = −ck for k ∈ J+, ãk =−ck −∑m

i=1 λiaik and c̃k = ck

for k ∈ J−, b̃ = −l + ∑
k∈J− ck.

5.1.2 Partial solutions

Let N = {1, . . . , n}, M = {1, . . . , m}, and Q = {1, . . . , q}. Following the backtrack
scheme in Geoffrion [16], let It ⊆ Q denote the index set of yk’s determined at
iteration t. Define a signed index set

Jt = {ξ | ξ = k if yk = 1, k ∈ It; ξ = −k, if yk = 0, k ∈ It}.
Then, Jt represents a partial solution determined at iteration t. A decision term yk
with k ∈ Īt = Q\It is said to be a free term of the partial solution Jt. Assigning binary
values to all free decision terms of Jt yields a completion of Jt. Note that if Jt has l
elements, it can determine 2q−l different completions. Among all completions of Jt,
the typical completion yt is the completion with all the free yk’s set to be zero. Since

144 J Glob Optim (2007) 39:127–154

all ãk’s in the master problem (9) are nonnegative, the typical completion of Jt has the
minimum value of the objective function among all completions of Jt.

A partial solution Jt is said to be feasible (infeasible) if its typical completion con-
stitutes a feasible (infeasible) solution y to the master problem (9). A partial solution
Jt can be also used to partially determine some decision variables xj’s consistently
via the secondary constraints (10) or can lead to an inconsistent solution. When an
inconsistency occurs, Jt is said to be an inconsistent partial solution. Otherwise, it is a
consistent partial solution. It is clear an inconsistency of Jt implies that all completions
of Jt are inconsistent to the secondary constraints.

5.1.3 Consistency check

When Jt is consistent, the decision variables xj’s determined by the second constraints
(10) form the converted solution of Jt. The converted solution can be represented by
the signed index set:

Dt = {ξ | ξ = j if xj = 1, j ∈ dt; ξ = −j, if xj = 0, j ∈ dt},
where dt is the index set of all xj’s in the converted solution. The converted solution Dt
could further determine some free decision terms yk’s by the secondary constraints.
These determined decision terms constitute an augmented solution of Jt which can be
represented by the signed index set:

Bt = {ξ | ξ = k if yk = 1, j ∈ bt; ξ = −k, if yk = 0, k ∈ bt},
where bt is the index set of all yk’s determined by the converted solution Dt. If Bt is
uniquely determined by Dt, then the complement of any element in Bt must lead to
an inconsistency and thus all decision terms in the augmented solution can be fixed.
We underline a signed index in Bt to denote that this decision term is fixed in the
augmented solution. It is clear that a new partial solution Jt+1 = Jt ∪ Bt must be
consistent. In the case of Bt = ∅, Jt itself is consistent.

5.1.4 Computation of feasible partial solutions

Taking the advantage of the single constraint in (9), a simple procedure can be derived
to search for a feasible partial solution of (9). Suppose that Jt is a partial solution at
iteration t. Let It be the index of Jt and yt the typical completion of Jt. Denote by
(MPt) the master problem (9) with yk, k ∈ It, being fixed at zero or one according to
Jt. When g̃(yt) > b̃, Jt is an infeasible partial solution. If

g̃(yt)+
∑

k∈Īt

min(0, ãk) > b̃ (11)

then, it is impossible to augment Jt to obtain a feasible completion. Thus, Jt can be
fathomed. Otherwise, there must exist at least one feasible completion of Jt. The
following procedure can be used to find a feasible completion of Jt.

Procedure 1 (Search for feasible partial solution)

Given a partial solution Jt and its index set It.

Step 0. If (11) holds, exit and there is no feasible completion of Jt. Otherwise, calcu-
late α = g̃(yt). Set I = {1, . . . , T}\It.

J Glob Optim (2007) 39:127–154 145

Step 1. Calculate i = arg mink∈I ãk.
Step 2. Set Jt := Jt ∪ {i}. If α := α + ãi ≤ b̃, exit and Jt is a feasible partial solution.

Otherwise, set I := I\{i}, return to Step 1.

Procedure 1 either finds a feasible partial solution or reports that no feasible com-
pletion of Jt can be found. For the details of the generation procedures for converted
solution and augmentation solution, readers may refer to Taha [47], as the procedures
are basically the same for the singly-constrained master problem in (9) and a general
multiply constrained master problem considered in Taha [47].

5.1.5 Two-level solution scheme for (Lλ(l))

Denote g̃(yt) by g̃t and f̃ (yt) by f̃ t. Based on the concept of the backtrack scheme
[16] and the Taha’s method [47], the following two-level solution method can be now
proposed for (Lλ(l)), the Lagrangian relaxation problem with a lower objective level
cut. The flow diagram of the algorithm is also given in Fig. 4.

Procedure 2 (Two-level solution method for (Lλ(l)))

Step 0 Set J0 = ∅, t = 0, and fopt = ∞.
Step 1 If g̃t ≤ b̃, go to Step 4.
Step 2 If (11) holds, fathom Jt by feasibility and go to Step 9.
Step 3 Apply Procedure 1 to search for a feasible Jt.
Step 4 If f̃ t ≥ fopt, fathom Jt by domination and go to Step 9.
Step 5 Consistency check. If Jt is inconsistent, fathom Jt by consistency and go to

Step 9. Otherwise, obtain Dt.
Step 6 Bt recognition. If Bt = ∅, set y∗ = yt and fopt = f̃ t, fathom Jt by optimality

and go to Step 9. Otherwise, augment Jt with Bt on the right.
Step 7 If f̃ t ≥ fopt, fathom Jt by domination and go to Step 9.
Step 8 If g̃t ≤ b̃, set y∗ = yt and fopt = f t, fathom Jt by optimality and go to Step 9.

Otherwise, set Jt+1 = Jt, t = t + 1 and go to Step 2.
Step 9 Backtrack. If all elements in Jt are underlined, terminate the algorithm. Oth-

erwise, generate Jt+1 by replacing the rightmost element of Jt which is not
underlined by its underlined complement and delete all elements to its right.
Set t = t + 1 and go to Step 1.

5.2 Main algorithm for (P0−1)

With Procedure 2 as the solver for (Lλ(l)), the following convergent Lagrangian and
objective level cut algorithm can be now proposed for obtaining an exact solution to
(P0−1).

Algorithm 2 (Convergent Lagrangian and objective level cut method for (P0−1))

Step 0 (initialization) Compute a lower bound l0 of f ∗. Set t = 0 and fopt = ∞.
Step 1 If lt ≥ fopt, stop.
Step 2 (dual search with objective cut) Solve

(Dlt) max
λ∈R

m+
d(λ, lt)

146 J Glob Optim (2007) 39:127–154

Fig. 4 Flow diagram of the two-level solution scheme for (Lλ(l))

by some dual search procedure, while the Lagrangian relaxation problem
(Lλ(lt)) is solved by using Procedure 2. The dual search method terminates
when the algorithm is not able to increase the dual value after a given number
of iterations. Let λt be the dual vector that generates the highest dual value in
the dual search process. Set dt = d(λt, lt).

Step 3 If dt > lt, set lt+1 =
dt� and let t := t+1. If a feasible solution x̃ with f (x̃) < fopt
is found during the dual search process, set xopt = x̃, set fopt = f (x̃). Go to
Step 1.

J Glob Optim (2007) 39:127–154 147

Step 4 If dt = lt, solve the following problem using Procedure 2 with λ = 0:

min f (x) =
q∑

k=1

cj

∏

j∈Qk

xj, (12)

s.t. lt ≤ f (x) =
q∑

k=1

ck

∏

j∈Qk

xj,

x ∈ {0, 1}n.

If there is a feasible optimal solution xt to (12), stop and xt is the optimal solu-
tion to (P0−1). Otherwise, set lk+1 = f (xt)+ 1, where xt is an optimal solution
to (12). Set t := t + 1 and go to Step 1.

The algorithm enters Step 4 only when the algorithm is not able to raise the dual
value at Step 3. Step 4 corresponds to the Lagrangian relaxation problem with λ = 0.
When Step 4 identifies a feasible solution, it will be optimal to the primal problem.
When Step 4 is not able to find feasible solutions, it can still help to raise the lower
objective cut. The following theorem is obvious and its proof is omitted due to the
similarity to the one for Theorem 2.

Theorem 3 Algorithm 2 either finds an optimal solution of (P0−1) or reports an infea-
sibility of (P0−1) in finite number of iterations.

Now we apply Algorithm 2 to solve the following example:

Example 3

min 3x1 + 5x1x2x3 + 3x1x4x5 + 8x2x3x5 − 4x3x4x5,

s.t. 3x1 − x1x4x5 − x2x3x5 + x3x4x5 ≤ 2,

2x1 − 4x1x2x3 − 7x1x4x5 − 3x2x3x5 − x3x4x5 ≤ −3,

− 6x1 − 3x1x2x3 + 5x1x4x5 − 3x2x3x5 + 6x3x4x5 ≤ 5,

x1, x2, x3, x4, x5 ∈ {0, 1}.

We set, as initial values, l0 = −4, the incumbent xopt = ∅ and fopt = ∞. Table 2 pro-
vides the details of the iterative process in obtaining the optimal solution (0, 1, 1, 1, 1)T

with an optimal value of 4 in three iterations.

Table 2 Iteration process of Example 3

Iteration λk dk x∗ f (x∗) lk

0 ∅ ∞
1 (0, 1.225, 0.612)T −1.67 (1, 1, 1, 1, 1)T 15 −1
2 (0.264, 0, 0)T 3.26 (1, 0, 0, 1, 1)T 6 4
3 (0, 0, 0)T 4 (0, 1, 1, 1, 1)T 4 4

148 J Glob Optim (2007) 39:127–154

6 Computational experiment

We report in this section the computational results in testing Algorithm 1 for five clas-
ses of separable integer programming problems and Algorithm 2 for the polynomial
zero-one programming problem.

6.1 Test problems

The six classes of test problems are described as follows.

Problem 1 Third degree polynomial integer programming:

fj(xj) =
3∑

k=1

cjkxk
j , j = 1, . . . , n,

gij(xj) =
3∑

k=1

aijkxk
j , i = 1, . . . , m, j = 1, . . . , n.

Coefficients cik are integer numbers with ci1 ∈ [−20, 20], ci2 ∈ [−10, 10], and ci3 ∈
[−5, 5]. Coefficients aijk are of real values with aij1 ∈ [−20, 20], aij2 ∈ [−10, 10], and
aij3 ∈ [−5, 5].
Problem 2 Convex quadratic integer programming with convex quadratic constraints:

fj(xj) = cj1x2
j + cj2xj, j = 1, . . . , n,

gij(xj) = aij1x2
j + aij2xj, i = 1, . . . , m, j = 1, . . . , n.

Coefficients cj1 and cj2, j = 1, . . . , n, are integer numbers taken from [1,10] and
[−100, 20], respectively. Coefficients aij1 and aij2, i = 1, . . . , m, j = 1, . . . , n, are of real
values taken from [1, 10] and [100, 220], respectively.

Problem 3 Convex quadratic integer programming with linear constraints:

fj(xj) = cj1x2
j + cj2xj, j = 1, . . . , n,

gij(xj) = aijxj, i = 1, . . . , m, j = 1, . . . , n.

Coefficients cj1 and cj2, j = 1, . . . , n, are integer numbers taken from [1,10] and
[−100, 20], respectively. Coefficient aij, i = 1, . . . , m, j = 1, . . . , n, are of real values
taken from [20, 60].
Problem 4 Concave quadratic integer programming with convex quadratic constraints:

fj(xj) = cj1x2
j + cj2xj, j = 1, . . . , n,

gij(xj) = aij1x2
j + aij2xj, i = 1, . . . , m, j = 1, . . . , n.

Coefficients cj1 and cj2, j = 1, . . . , n, are integer numbers taken from [−10, −1] and
[−20, 60], respectively. Coefficients aij1 and aij2, i = 1, . . . , m, j = 1, . . . , n, are of real
values taken from [1, 10] and [100, 220], respectively.

Problem 5 Concave quadratic integer programming with linear constraints:

fj(xj) = cj1x2
j + cj2xj, j = 1, . . . , n,

gij(xj) = aijxj, i = 1, . . . , m, j = 1, . . . , n.

J Glob Optim (2007) 39:127–154 149

Coefficients cj1 and cj2, j = 1, . . . , n, are integer numbers taken from [−10, −1] and
[−20, 60], respectively. Coefficient aij, i = 1, . . . , m, j = 1, . . . , n, are of real values
taken from [20, 80].

All the coefficients in the above five problems are taken uniformly and indepen-
dently. The finite integer sets are of the following form:

Xj = {xj ∈ Z | 1 ≤ xj ≤ 5}, j = 1, . . . , n.

The right-hand side b in the above five problems is generated according to the follow-
ing rule. Let 0 < r < 1. Set

bi = g
i
+ r(ḡi − g

i
), i = 1, . . . , m,

where ḡi = maxx∈X gi(x) and g
i

= minx∈X gi(x). The ratio r is used to control the
size of the feasible regions of the test problems and the degree of difficulty of the
problems. As we will see in the numerical results, the smaller the value of r, the more
difficult is the problem. A similar rule of determining the right-hand side was used in
generating test problems in Bretthauer and Shetty [7,8].

Problem 6 Polynomial zero-one programming problem (P0−1). The test problems
for (P0−1) are randomly generated using the following ranges of the coefficients: ck ∈
[−10, 20], aik ∈ [−5, 15] and the right-hand side is taken as bi = (1−r)

∑q
k=1 min(0, aik)

+ r
∑q

k=1 max(0, aik) where r ∈ (0, 1) is an adjustable ratio of the right-hand side. A
density number D ∈ (0, 1] is also adjustable in controlling the percentage of nonzero
coefficients in matrix A = (aik)m×q. The indices in Qk are randomly generated from
set {1, . . . , n} with 2 ≤ |Qk| ≤ 6 for k = 1, . . . , q.

6.2 Numerical results

Both Algorithms 1 and 2 have been coded by Fortran 90 and run on a Sun Blade
2000 workstation. The computational results of Algorithm 1 for Problems 1–5 are
reported in Tables 3–7, while the computational results of Algorithm 2 for Problem 6
are summarized in Table 8. All the results are obtained by running the algorithm for

Table 3 Numerical results for
third degree polynomial
integer programming
(r = 0.67)

n m Average Average Average
duality bounds number of iterations CPU seconds

50 10 430.9 1 2.8
50 20 2,157.1 3 0.7
50 30 1,111.1 4 33.4
50 50 2,802.0 7 58.8

Table 4 Numerical results for
convex quadratic integer
programming with convex
quadratic constraints
(r = 0.62)

n m Average Average Average
duality bounds number of iterations CPU seconds

50 10 773.5 5 5.3
50 20 795.7 13 334.7
50 25 1,007.7 7 126.7
50 30 986.1 8 194.3

150 J Glob Optim (2007) 39:127–154

Table 5 Numerical results for
convex quadratic integer
programming with linear
constraints (r = 0.65)

n m Average Average Average
duality bounds number of iterations CPU seconds

50 10 5.7 3 113.1
50 15 84.4 6 51.1
50 20 29.4 2 2.5
50 30 18.9 3 381.3

Table 6 Numerical results for
concave quadratic integer
programming with convex
quadratic constraints
(r = 0.70)

n m Average Average Average
duality bounds number of iterations CPU seconds

50 5 533.5 3 47.4
50 8 765.6 4 5.5
50 10 791.4 6 8.8
50 20 1,624.6 10 266.3

Table 7 Numerical results for
concave quadratic integer
programming with linear
constraints (r = 0.70)

n m Average Average Average
duality bounds number of iterations CPU seconds

50 5 70.2 2 0.1
50 10 57.9 6 86.1
50 15 122.0 7 26.8
50 20 132.6 5 1,027.2

20 randomly generated problems. The average number of iterations is rounded off to
its nearest integer. The following notations are used in the tables:

• n = number of variables;
• m = number of constraints;
• q = number of decision terms in (P0−1);
• r = ratio corresponding to the adjustable right-hand side b;
• D = density of matrix A = (aik)m×q in (P0−1);
• Duality bound = initial duality bound u0 − l0, where l0 and u0 are defined in

Algorithm 1.

Tables 3–8 indicate that the proposed algorithms are capable of solving medium-size
separable integer programming problems and polynomial 0-1 programming problems
within reasonable CPU time. From Tables 3–7, we observe that for a fixed number of
variables, the CPU time of Algorithm 1 for solving separable integer programming
problems tends to increase as the number of constraints m goes up. This could be par-
tially due to that the duality bound of the problem has the tendency to increase as m
increases and that the quality of the best dual value found by the subgradient method
becomes poorer as the number of dual variables, m, increases. Table 8 indicates that
for a fixed number of nonlinear terms in polynomial 0-1 programming problems,
Algorithm 2 becomes more efficient when the number of variables goes up. This
could be due to the fact that the back-track scheme for fathoming partial solutions by
feasibility and consistency check in the two-level solution method for (Lλ(l)) becomes
more efficient when there are less overlapping variables among Qk (k = 1, . . . , q). We
can also conclude that the number of nonlinear terms q has a significant impact on

J Glob Optim (2007) 39:127–154 151

Table 8 Numerical results for 0-1 polynomial programming problem (r = 0.5)

q n m Average CPU time (s)

D = 0.25 D = 0.50 D = 0.75 D = 1.0

50 100 20 1.2 1.0 23.4 8.3
50 150 20 0.4 0.3 13.6 0.6
50 200 20 1.5 0.5 2.5 1.1
70 100 20 70.5 281.2 495.8 371.1
70 150 20 11.0 97.4 134.0 45.2
70 200 20 11.6 37.4 113.8 72.7

Table 9 Comparison results of Algorithm 1 and BARON for third degree polynomial integer pro-
gramming problem

n m Algorithm 1 BARON

Average CPU time (s) Average CPU time (s)
r = 0.63 r = 0.65 r = 0.67 r = 0.63 r = 0.65 r = 0.67

30 10 1.0 2.2 0.8 4.4 13.4 9.0
30 20 16.8 15.9 0.3 21.2 22.6 3.9
30 30 18.2 13.8 2.0 20.9 7.7 8.2
40 10 177.4 0.84 0.4 7.7 8.6 10.5
40 20 12.4 14.9 2.0 26.7 43.2 8.0
40 30 57.6 8.1 1.9 48.3 65.1 12.2

the performance of Algorithm 2. In fact, the two-level solution method for solving the
Lagrangian relaxation (Lλ(l)) becomes less efficient as the number of the secondary
variables introduced in the two-level reformulation increases.

6.3 Comparison results

We have compared Algorithms 1 and 2 with BARON (Version 7.5.3), a commercial
software that can solve mixed-integer nonlinear programming problems to global opti-
mality (see [39]). BARON is based on a prototypical branch-and-bound algorithm that
incorporates novel relaxations schemes, range reduction tests, and branching strate-
gies (see [49]). The comparison testing was performed on a Pentium IV PC (2.2 GHz
and 256 Mb RAM). Problems 1 and 6 are used in our numerical comparison with
BARON. The test problems are first generated and solved by Algorithms 1 and 2
and then solved by BARON using the optimization modeling software AIMMS 3.6
(see [36]).

Tables 9 and 10 summarize the comparison results in which the average CPU time
of each instance is obtained by solving 5 randomly generated test problems. We note
from Table 9 that Algorithm 1 uses less CPU time to obtain the optimal solution of
the third degree polynomial integer programming problems than BARON in most
cases. Comparing the results in Table 10, it appears that Algorithm 2 outperforms
BARON for 0-1 polynomial problems with n ≥ 150 while BARON performs better
than Algorithm 2 for problems with n ≤ 100. It is interesting to observe from Table
10 that for a fixed number of nonlinear terms in (P0−1), the CPU time of BARON
increases significantly as n increases while the CPU time of Algorithm 2 tends to
decrease as n increases.

152 J Glob Optim (2007) 39:127–154

Table 10 Comparison results of Algorithm 2 and BARON for 0-1 polynomial programming problem
(m = 20, q = 50, r = 0.5)

n Algorithm 2 BARON

Average CPU time (s) Average CPU time (s)
D = 0.25 0.50 0.75 1.0 D = 0.25 0.50 0.75 1.0

50 7.4 11.5 59.6 4.9 2.6 0.89 4.0 1.3
100 4.6 3.2 17.2 11.9 4.5 2.7 4.2 5.3
150 0.60 2.9 10.3 1.8 82.2 15.2 16.1 5.5
200 0.83 1.4 2.3 2.7 394.8 59.7 NS NS

NS—5 test problems were not solved within 2 CPU hours

It is worth pointing out BARON is applicable to solve general nonconvex nonsep-
arable MINLP where only factorable functions are involved, while Algorithm 1 is a
specific algorithm designed for separable integer programming problem (Ps) which
does not require the factorability of the functions involved.

7 Conclusions

A novel Lagrangian dual and objective level cut method has been proposed in this
paper. The method is based on a key observation that the duality gap of an integer
program can be eliminated by reshaping (re-confining) the perturbation function.
Consequently, the optimal solution can be exposed to the convex hull of the revised
perturbation function and thus the success of dual search can be guaranteed. We have
investigated how to add objective level cuts to reshape the perturbation function. Two
specific algorithms have been developed for separable integer programming and poly-
nomial 0-1 programming, respectively. Implementation issues in solving the Lagrang-
ian relaxation problems with an objective cut constraint for both (Ps) and (P0−1)

have been also discussed. The numerical results show that the proposed convergent
Lagrangian and objective level cut methods are capable of solving medium-size sep-
arable integer programming problems and polynomial 0-1 programming problems in
reasonable time. Comparison results also show the effectiveness of our algorithms.

Acknowledgements This work was supported by the Research Grants Council of Hong Kong grants
CUHK 4214/01E and CUHK4245/04E, and National Natural Science Foundation of China grants
70671064 and 70518001.

References

1. Balas, E.: An additive algorithm for solving linear programs with zero-one variables. Oper.
Res. 13, 517–546 (1965)

2. Balas, E., Mazzola, J.B.: Nonlinear 0-1 programming: I. Linearization Techniques. Math. Pro-
gram. 30, 1–21 (1984a)

3. Balas, E., Mazzola, J.B.: Nonlinear 0–1 programming: II. Dominance Relations and Algorithms.
Math. Program. 30, 22–45 (1984b)

4. Bell, D.E., Shapiro, J.F.: A convergent duality theory for integer programming. Oper. Res. 25, 419–
434 (1977)

5. Benson, H.P., Erenguc, S.S.: An algorithm for concave integer minimization over a polyhe-
dron. Nav. Res. Logist. 37, 515–525 (1990)

J Glob Optim (2007) 39:127–154 153

6. Bretthauer, K.M., Cabot, A.V., Venkataramanan, M.A.: An algorithm and new penalties for
concave integer minimization over a polyhedron. Nav. Res. Logist. 41, 435–454 (1994)

7. Bretthauer, K.M., Shetty, B.: The nonlinear resource allocation problem. Oper. Res. 43, 670–
683 (1995)

8. Bretthauer, K.M., Shetty, B.: A pegging algorithm for the nonlinear resource allocation prob-
lem. Comput. Oper. Res. 29, 505–527 (2002)

9. Chern, M.S.: On the computational complexity of reliability redundancy allocation in a series
system. Oper. Res. Lett. 11, 309–315 (1992)

10. Dantzig, G.B.: On the significance of solving linear programming with some integer vari-
ables. Econometrica 28, 30–40 (1960)

11. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming problems. Man-
age. Sci. 27, 1–18 (1981)

12. Fisher, M.L., Shapiro, J.F.: Constructive duality in integer programming. SIAM J. Appl.
Math. 27, 31–52 (1974)

13. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications.
Oxford University Press, Oxford (1995)

14. Fortet, R.: L′algèbre de Boole et ses applications en recherche Opérationnelle. Cah. Centre d’
Étud. Rech. Opér. 1, 5–36 (1959)

15. Fortet R.: Applications de l′algèbre de Boole en recherche Opérationnelle. Rev. Fr. d’ Inform.
Rech. Opér. 4, 17–26 (1960)

16. Geoffrion, A.M.: Integer programming by implicit enumeration and Balas’ method. SIAM
Rev. 9, 178–190 (1967)

17. Geoffrion, A.M.: Lagrangean relaxation for integer programming. Math. Program. Study 2, 82–
114 (1974)

18. Granot, F., Hammer, P.L.: On the role of generalized covering problems. Cah. Centre d’ Étud.
Rech. Opèr. 17, 277–289 (1975)

19. Grossmann I.E., Kravanja Z.: Mixed-integer nonlinear programming: a survey of algorithms and
applications. In: Biegler, L.T., Coleman, T.F., Conn, A.R. and F. N. Santosa (eds.) Large-Scale
optimization with Applications, Part II: Optimization Design and Control. Springer, Berlin,
Heidelberg, New york (1997)

20. Hansen, P.: Methods of nonlinear 0-1 programming. Ann. Discrete Math. 5, 53–70 (1979)
21. Hansen, P., Jaumard, B., Mathon, V.: Constrained nonlinear 0-1 programming. ORSA J. Com-

put. 5, 97–119 (1993)
22. Helmberg, C., Rendl, F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting

planes. Math. Program. 82, 291–315 (1998)
23. Hochbaum, D.S.: A nonlinear Knapsack problem. Oper. Res. Lett. 17, 103–110 (1995)
24. Horst, R., Thoai, N.V.: An integer concave minimization approach for the minimum concave cost

capacitated flow problem on networks. OR Spektrum 20, 47–53 (1998)
25. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin, Heidelberg,

New york (1993)
26. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. MIT Press, Cam-

bridge, MA (1988)
27. Lemaréchal, C., Renaud, A.: A geometric study of duality gaps, with applications. Math. Pro-

gram., 90, 399–427 (2001)
28. Li, D., Sun, X.L.: Success guarantee of dual search in integer programming: p-th power Lagran-

gian method. J. Glob. Optim. 18, 235–254 (2000)
29. Li, D., Sun, X.L.: Towards strong duality in integer programming. J. Glob. Optim. 35, 255–

282 (2006)
30. Li, D., White, D.J.: P-th power Lagrangian method for integer programming. Ann. Oper.

Res. 98, 151–170 (2000)
31. Marsten, R.E., Morin, T.L.: A hybrid approach to discrete mathematical programming. Math.

Program. 14, 21–40 (1978)
32. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I

convex underestimating problems. Math. Program. 10, 147–175 (1975)
33. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York

(1988)
34. Parker, R.G., Rardin, R.L.: Discrete Optimization. Academic, Boston (1988)
35. Poljak, S., Rendl, F., Wolkoswicz, H.: A recipe for semidefinite relaxation for 0-1 quadratic

programming. J. Glob. Optim. 7, 51–73 (1995)

154 J Glob Optim (2007) 39:127–154

36. Roelofs, M., Bisschop, J.: AIMMS user’s Guide. Paragon Decision Technology. http://www.aim-
ms.com/aimms/download/manuals/AIMMS_ 3UG.pdf (2006)

37. Ryoo, H.S., Sahinidis, N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19, 403–
424 (2001)

38. Ryoo, H.S., Sahinidis, N.V.: Global optimization of multilinear problems. J. Glob. Optim. 26, 387–
418 (2003)

39. Sahinidis, N.V.: BARON: branch and reduce optimization navigator, user’s manual ver. 4.0.
Department of Chemical Engineering, University of Illinois at Urbana Champaign. http://archi-
medes.scs.uiuc.edu/baron/manuse.pdf (2000)

40. Shapiro, J.F.: A survey of lagrangian techniques for discrete optimization. Ann. Discrete
Math. 5, 113–138 (1979)

41. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special
discrete sets. Acta Math. Vietnam 22, 245–270 (1997)

42. Sherali, H.D.: Global optimization of nonconvex polynomial programming problems having
rational exponents. J. Glob. Optim. 12, 267–283 (1998)

43. Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming prob-
lems. Math. Program. 89, 459–478 (2001)

44. Smith, E.M., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem.
Eng. 21, S791–S796 (1997)

45. Sun, X.L., Li, D.: Asymptotic strong duality for bounded integer programming: a logarithmic-
exponential dual formulation. Math. Oper. Res. 25, 625–644 (2000)

46. Sun, X.L., Li, D.: Optimality condition and branch and bound algorithm for constrained redun-
dancy optimization in series systems. Optim. Eng. 3, 53–65 (2002)

47. Taha, H.A.: A Balasian-based algorithm for zero-one polynomial programming. Manage.
Sci. 18, B328–B343 (1972)

48. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and
Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer
Academic Publishers, Dordrecht (2002)

49. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a
theoretical and computational study. Math. Program. 99, 563–591 (2004)

50. Watters, L.J.: Reduction of integer polynomial programming problems to zero-one linear pro-
gramming problems. Oper. Res. 15, 1171–1174 (1967)

	Computing exact solution to nonlinear integer programming: Convergent Lagrangianand objective level cut method
	Abstract
	Introduction
	Lagrangian duality
	Lagrangian dual formulation
	Perturbation function and duality gap
	Objective level cut method
	Motivation
	Objective level cut scheme
	Algorithm for separable nonlinear integer programming
	Algorithm for polynomial 0-1 programming
	Solution scheme for Lagrangian relaxation problem
	Two-level reformulation
	Partial solutions
	Consistency check
	Computation of feasible partial solutions
	Two-level solution scheme for (L(l))
	Main algorithm for (P0-1)
	Computational experiment
	Test problems
	Numerical results
	Comparison results
	Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

